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Figure 2. Proposed method of training a lightweight object detection model. Here, the unlabeled dataset is split into two subsets, one smaller and one larger. The smaller subset is
labeled by a human expert, minimizing the hand-labeling cost. A robust object detection model is trained on this small, ground-truth subset. We then evaluate the larger, unlabeled portion
using the robust model to create the inferenced dataset. The combined ground-truth subset and the inferenced dataset are then used to train the lightweight model. As in the standard
approach, using more labeled images leads to improved performance; however, with our approach, costs associated with hand-labeling images are significantly reduced.

Figure 4. Dataset curation comparisons. Calculations assume a human-expert label
time of 30 seconds per bounding box, a review time of 0.0167 seconds (60 fps) per
image, and a discard time of 5 seconds per image, a computer training time of 10
hours, and a computer inference time of 0.5 seconds per image.

The three resulting datasets are used to train
our lightweight models; the results are shown
iIn Figures 5 and 6.
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Figure 5. Lightweight model results, SSD with MobileNetV2. Trained with five-fold
cross validation. (mAP = standard deviation.)
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Figure 6. Lightweight model results, SSD with Inception-v2. Trained with five-
fold cross validation. (mAP =+ standard deviation.)
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